

DESIGN OF A 2-AXIS, CONTINUOUS ROTATION, **CAMERA CONTROL PLATFORM**

Author: Gareth Cawood Supervisor: Dr Herman Engelbrecht

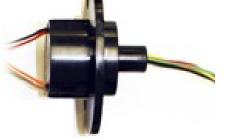
Department of Mechanical & Mechatronic Engineering, University of Stellenbosch

Introduction

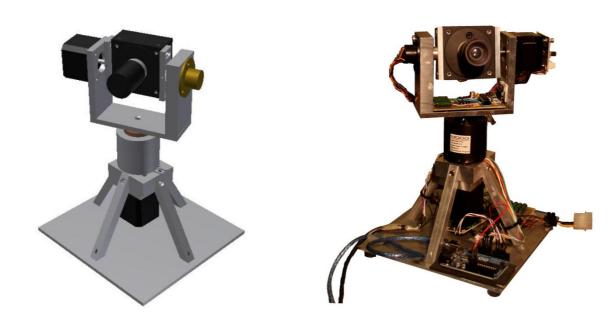
Commercial platforms exist, but are limited to one rotation. A desire existed for a platform capable of continuous rotation for tracking and augmented reality applications

Objective

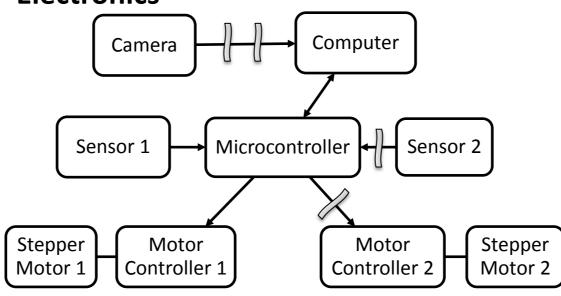
To build a 2-axis continuous rotation camera control platform, capable of speeds greater than 40°/s and an Accuracy of less than 1°.


Design

• Drive


Stepper Motors were chosen for their simplicity of control and accuracy.

Data & Power Transfer •


Slip Rings allow a continued electrical connection through a rotating axis.

• Platform

• Electronics

• Software

User interface allows control of motion and displays positional data.

😣 🛇 🔕 tk	
File Serial Help	
Position	Aim Se
Pan:	0 66
Tilt:	0 er
Go	
Speed	•
Pan: 10	3
Tilt: 0	0
Go	
STOP QUIT	

er]	
	_	

Results

Data Transfer

- Wire modifications and slip rings had no negative effect on data transfer.
- Tested up to 1000°/s in both planes.

Speed

- Maximum speed: 100°/s.
- < 4% calculated measured error.
- Time to desired speed (ω): $t = \frac{1}{\omega_{/0.45}}$ s 45ms to 10°/s

Position

- Position addressable in 0.45° increments.
- Accuracy: 0.23° ±10%
- Time to position: $t = \frac{\Delta angle}{40} s$

Conclusion

A platform was successfully designed and manufactured that was capable of continuous rotation with a speed and accuracy as required, while still maintaining an electrical connection without degradation of the data link.

